

Catalytic activity of a novel water-soluble cross-linked polymer imprinted by a transition-state analogue for the stereoselective hydrolysis of enantiomeric amino acid esters

Katsutoshi Ohkubo*, Yoshio Funakoshi and Takashi Sagawa

Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan (Received 20 December 1995)

A novel water-soluble cross-linked polymer catalyst containing L-histidine and quarternary trimethylammonium groups, which was imprinted by a *racemic* transition-state analogue of phenyl 1-benzyloxycarbonyl-3-methylpentylphosphonate for the hydrolysis of *p*-nitrophenyl *N*-(benzyloxycarbonyl)-L (or D)-leucinate (Z-L (or D)-Leu-PNP), exhibited the notable substrate stereospecificity for Z-L-Leu-PNP in the hydrolyses of enantiomeric amino acid *p*-nitrophenyl esters in 10 vol% DMSO (or MeCN)-Tris buffer pH 7.15) at 303 K. Copyright © 1996 Elsevier Science Ltd.

(Keywords: transition state analogue; imprinted polymer; stereoselective hydrolysis)

Although the polymer catalysts imprinted by transitionstate analogues (TSAs) have recently received considerable attention as plastic enzymes or artificial antibodies¹, the substrate-stereospecific catalysis of water-soluble cross-linked polymers recorded by TSA has hitherto been the subject of only limited investigation. Among the TSA-imprinted cross-linked polymers reported previously as esterase-like catalysts for the hydrolyses of amino acid esters^{2,5}, poly(ethylene imine)² is only one water soluble polymer catalyst for the substrate-specific hydrolysis of amino acid esters.

This report demonstrates that a novel water-soluble cross-linked polymer containing a L-histidyl group as a catalytic site, which was imprinted by *racemic* phenyl 1-benzyloxycarbonylamino-3-methylpentylphosphonate (*rac*-TSA) for the hydrolysis of *p*-nitrophenyl *N*-(benzyloxycarbonyl)-L (or D)-leucinate (Z-L (or D)-Leu-PNP), exhibited the catalytic monoclonal antibody-like substrate-stereospecificity for Z-L-Leu-PNP in the hydrolysis of enantiomeric amino acid *p*-nitrophenyl esters (*Scheme 1*).

Phenyl 1-benzyloxycarbonylamino-3-methylpentylphosphonate (*rac*-TSA) was obtained as described previously². A water-soluble cross-linked polymer (TSSP) was prepared by radical polymerization according to *Scheme 2*.

Equivalent amounts (0.26 mmol) of methyl N-acroyl-L-histidinate (L-His monomer) and rac-TSA were mixed in DMSO (12 cm^3) for 1 h at room temperature in N₂ for making some interaction between L-His monomer and TSA before the polymerization[†], followed by the addition of acrylamide (2.6 mmol), N-(3-trimetylaminopropyl)acrylamide chloride (2.34 mmol), a cross-linker of N,N-ethylenebis(2-propeneamide) (0.52 mmol) and AIBN (0.08 mmol) into the DMSO solution, and then polymerized at 60°C to produce a polymer possessing cross-linker content of 8.6%. The complete removal of TSA from the polymer was performed with 5 vol% Et₃ N-MeOH at first and then with MeOH. The polymer TSSP possessing the randomly distributed quarternary trimethylammonium group through its framework was very soluble in water.

The hydrolyses of 20.0 μ mol dm⁻³ Z-L (or D)-Leu-PNP or *p*-nitrophenyl *N*-acetyl-L-leucinate (or phenylalanate) {C₂-L-Leu (or Phe)-PNP} by the soluble polymer catalyst TSSP {methyl L-histidinate (His) unit concentration = 0.23 mmol dm⁻³} or His (0.10 mmol dm⁻³) were carried out in 10 vol% DMSO (or MeCN)-Tris buffer (pH 7.15) at 303 K. The pseudo-first-order reaction constants obtained with and without the catalyst (K_{cat} and k_{uncat}, respectively) were determined by monitoring the produced amount of PNP anion spectrophotometrically at 400 nm. The second-order catalytic rate constant k_{cat}^{app} was evaluated by the equation of k_{cat}^{app} = (k_{cat} - k_{uncat})/[His], where [His] denotes the concentration of His unit in the catalyst.

It is notable at first from the kinetic parameters listed in *Table 1* that the soluble polymer catalyst TSSP exhibited a higher esterolytic activity than the catalytic site of methyl L-histidinate (His) *per se* with the k_{cat}^{app} (TSSP)/ k_{cat}^{app} (His) ratio = 4.3 (in the Z-L-Leu-PNP hydrolysis). On the other hand, the hydrolysis of Z-D-Leu-PNP with the TSSP catalyst was depressed remarkably and was slower than that of the uncatalytic one in both solvent systems; the apparent stereoselectivity of

^{*} To whom correspondence should be addressed

[†] In the 400 MHz ^fH n.m.r. spectra of the DMSO- d_6 solution including L-His monomer and *rac*-TSA, the chemical shift of the imidazolyl NH proton (in L-His monomer) from 6.60 to 7.20 ppm and that of the amide C(=O)NH proton (in TSA) from 7.53 to 6.90 ppm suggested hydrogen bond formation or electrostatic interaction between them

Novel water-soluble cross-linked polymer: K. Ohkubo et al.

Scheme 1 Transition-state (TS) and a transition-state analogue (TSA) for the esterolysis of Z-L-Leu-PNP

Scheme 2 Preparation of the water-soluble polymer TSSP

TSSP is given by the enantiomer rate ratio $k_{cat}(L/D) = 3.0 (10\% \text{ v/v DMSO-H}_2O) - 7.2 (10\% \text{ v/v MeCN-H}_2O)$. Since TSSP did not hydrolyse C₂-L-Leu (or Phe)-PNP efficiently, the soluble TSSP catalyst can recognize both the skeletons of the *N*-benzyloxy (Z) group and the L-Leu side chain of the substrates with the substrate-stereospecificity.

In this respect, the hydrolysis of Z-L-Leu-PNP with TSSP in the presence of *rac*-TSA decreased the reaction rate monotonously and stopped the catalytic reaction completely under the condition of [rac-TSA]/[TSSP] = 2.0 (*Figure 1*). Therefore, the soluble TSSP polymer has the reaction cavity which recognizes the skeleton of *rac*-TSA, especially that of L-TSA. This implies that the complex formation of L-His monomer with L-TSA in DMSO through the hydrogen bonding or electrostatic interaction was predominant rather than with D-TSA in the preliminary mixed system of L-His monomer and

rac-TSA for the synthesis of TSSP polymer (see *Scheme 2*).

In regard to the facilitated incorporation and hydrolysis of Z-L-Leu-PNP in the cavity of TSSP, the kinetic parameters of $K_{\rm m}$ and k_2 were obtained from the linear relation of $1/(k_{\rm cat} - k_{\rm uncat}) = K_{\rm m}/(k_2 - k_{\rm uncat})[{\rm TSSP}] + <math>1/(k_2 - k_{\rm uncat})$ in the following simplified process for the esterolysis of Z-L-Leu-PNP with TSSP ([TSSP] = 0.12-0.50 mmol dm⁻³) in 10% v/v DMSO-H₂O in Tris buffer (pH 7.15) at 303 K.

Scheme 3 A simplified reaction process of the ester (S) hydrolysis with TSSP

Table 1 Catalytic activity and stereoselectivity of the soluble polymer catalyst TSSP for the hydrolyses of Z-L (or D)-Leu-PNP and C₂-L-Leu (or Phe)-PNP in 10% v/v DMSO-H₂O (A) or 10% v/v MeCN-H₂O (B) in Tris buffer (pH 7.15) at 303 K^a

Parameter	Z-L-Leu-PNP		Z-D-Leu-PNP		C ₂ -L-Leu-PNP	C ₂ -L-Phe-PNP
	In solvent A	In solvent B	In solvent A	In solvent B	In solvent B	In solvent B
$10^{5} K_{cat} (s^{-1})$	11.6	8.03	3.83	1.11	6.56	10.3
	(5.50)					
$10^5 k_{\rm uncat} ({\rm s}^{-1})$	4.82	3.97	4.82	3.97	7.24	9.51
$k_{\rm cat}/k_{\rm uncat}$	2.4	2.0	1/1.3	1/3.6	1/1.1	1.08
	(1.2)					
$10^2 k_{\rm cat}^{\rm app} \ ({\rm mol} \ {\rm dm}^{-3})$	29.5	17.6	0 <	0 <	0 <	3.4
	(6.8)					

^a [His unit is TSSP] = 0.23 mmol dm⁻³ and [substrate] = 20.0 μ mol dm⁻³. Values in parentheses were obtained with 0.10 mmol dm⁻³ methyl Lhistidinate (His)

Figure 1 Inhibition of the Z-L-Leu-PNP (20.0 μ mol dm⁻³) esterolysis with TSSP ([His unit] = 0.23 mmol dm⁻³) by TSA (0-40.0 μ mol dm⁻³) in 10% v/v DMSO-H₂O in Tris buffer (pH 7.15) at 303 K

It is also worth emphasizing that the soluble TSSP catalyst actually incorporates Z-L-Leu-PNP to form the TSSP-substrate complex with $K_{\rm m} = 2.24 \times 10^{-4} \text{ mol}^{-1} \text{ dm}^3$ and hydrolyses Z-L-Leu-PNP efficiently with the reaction rate ratio $k_2/k_{\rm uncat} = 16.2 (10^5 k_2 = 64.8 \text{ s}^{-1})$.

Thus, the present soluble TSSP catalyst, the reaction cavity of which seems to be predominantly recorded by the shape of L-TSA, was found to exhibit the efficient substrate-stereospecific hydrolysis of Z-L-Leu-PNP through the substrate incorporation into its reaction cavity.

REFERENCES

- 1 Wulff, G. Angew. Chem. Int. Edn Engl. 1995, **34**, 1812 (and literature cited therein)
- 2 Ohkubo, K., Urata, Y., Honda, Y., Nakashima, Y. and Yoshinaga, K. Polym. Commun. 1994, 35, 5372
- 3 Robinson, D. K. and Mosbach, K. J. Chem. Soc., Chem. Commun. 1989, 969
- 4 Ohkubo, K., Urata, Y., Hirota, S., Honda, Y. and Sagawa T. J. Mol. Cat. 1994, 87, L21
- 5 Ohkubo, K., Urata, Y., Hirota, S., Honda, Y., Fujishita, Y. and Sagawa, T. J. Mol. Cat. 1994, 93, 189