

Catalytic activity of a novel water-soluble cross-linked polymer imprinted by a transition-state analogue for the stereoselective hydrolysis of enantiomeric amino acid esters

Katsutoshi Ohkubo*, Yoshio Funakoshi and Takashi Sagawa

Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan (Received 20 December 1995)

A novel water-soluble cross-linked polymer catalyst containing L-histidine and quarternary trimethylammonium groups, which was imprinted by a *racemic* transition-state analogue of phenyl 1-benzyloxycarbonyl-3-methylpentylphosphonate for the hydrolysis of p-nitrophenyl N-(benzyloxycarbonyl)-L (or D)-leucinate (Z-L (or D)-Leu-PNP), exhibited the notable substrate stereospecificity for Z-L-Leu-PNP in the hydrolyses of enantiomeric amino acid p-nitrophenyl esters in 10 vol% DMSO (or MeCN)-Tris buffer pH 7.15) at 303 K. Copyright $©$ 1996 Elsevier Science Ltd.

(Keywords: transition state analogue; imprinted polymer; stereoseleetive hydrolysis)

Although the polymer catalysts imprinted by transitionstate analogues (TSAs) have recently received considerable attention as plastic enzymes or artificial antibodies^{\mathbf{j}}, the substrate-stereospecific catalysis of water-soluble cross-linked polymers recorded by TSA has hitherto been the subject of only limited investigation. Among the TSA-imprinted cross-linked polymers reported previously as esterase-like catalysts for the hydrolyses of amino acid esters^{2,9}, poly(ethylene imine)² is only one water soluble polymer catalyst for the substrate-specific hydrolysis of amino acid esters.

This report demonstrates that a novel water-soluble cross-linked polymer containing a L-histidyl group as a catalytic site, which was imprinted by *racemic* phenyl 1 -benzyloxycarbonylamino-3-methylpentylphosphonate *(rac-TSA)* for the hydrolysis of p-nitrophenyl N- (benzyloxycarbonyl)-L (or D)-leucinate (Z-L (or D)- Leu-PNP), exhibited the catalytic monoclonal antibody-like substrate-stereospecificity for Z-L-Leu-PNP in the hydrolysis of enantiomeric amino acid pnitrophenyl esters *(Scheme 1).*

Phenyl 1 -benzyloxycarbonylamino-3-methylpentylphosphonate *(rac-TSA)* was obtained as described previously². A water-soluble cross-linked polymer (TSSP) was prepared by radical polymerization according to *Scheme 2.*

Equivalent amounts (0.26 mmol) of methyl N-acroyl-L-histidinate (L-His monomer) and *rac-TSA* were mixed in DMSO (12 cm³) for 1 h at room temperature in N₂ for making some interaction between L-His monomer and TSA before the polymerization[†], followed by the addition of acrylamide (2.6 mmol), N-(3-trimetylaminopropyl)acrylamide chloride (2.34mmol), a cross-linker of N,N-ethylenebis(2-propeneamide) (0.52 mmol) and AIBN (0.08 mmol) into the DMSO solution, and then polymerized at 60°C to produce a polymer possessing cross-linker content of 8.6%. The complete removal of TSA from the polymer was performed with 5vo1% Et₃ N-MeOH at first and then with MeOH. The polymer TSSP possessing the randomly distributed quarternary trimethylammonium group through its framework was very soluble in water.

The hydrolyses of 20.0 μ mol dm⁻³ Z-L (or D)-Leu-PNP or p-nitrophenyl N-acetyl-L-leucinate (or phenylalanate) ${C_2$ -L-Leu (or Phe)-PNP} by the soluble polymer catalyst TSSP {methyl L-histidinate (His) unit concentration = 0.23 mmol dm⁻³} or His $(0.10$ mmoldm⁻³) were carried out in 10vol% DMSO (or MeCN)-Tris buffer (pH7.15) at 303K. The pseudo-first-order reaction constants obtained with and without the catalyst (K_{cat}) and k_{uncat} , respectively) were determined by monitoring the produced amount of PNP anion spectrophotometrically at 400nm. The second-order catalytic rate constant $k_{\text{cat}}^{\text{app}}$ was evaluated by the equation of $k_{\text{cat}}^{\text{app}}$ = $(k_{cat} - k_{uncat})/[His]$, where [His] denotes the concentration of His unit in the catalyst.

It is notable at first from the kinetic parameters listed in *Table 1* that the soluble polymer catalyst TSSP exhibited a higher esterolytic activity than the catalytic site of methyl *L*-histidinate (His) *per se* with the $k_{\text{cat}}^{\text{app}}(\text{TSSP})/k_{\text{cat}}^{\text{app}}(\text{His})$ ratio = 4.3 (in the Z-L-Leu-PNP hydrolysis). On the other hand, the hydrolysis of Z-o-Leu-PNP with the TSSP catalyst was depressed remarkably and was slower than that of the uncatalytic one in both solvent systems; the apparent stereoselectivity of

^{*} To whom correspondence should be addressed

[†] In the 400 MHz 'H n.m.r. spectra of the DMSO- d_6 solution including
L-His monomer and *rac*-TSA, the chemical shift of the imidazolyl NH proton (in L-His monomer) from 6.60 to 7.20 ppm and that of the amide $C(=O)NH$ proton (in TSA) from 7.53 to 6.90 ppm suggested hydrogen bond formation or electrostatic interaction between them

Novel water-soluble cross-linked polymer. K. Ohkubo et al.

Scheme 1 Transition-state (TS) and a transition-state analogue (TSA) for the esterolysis of Z-L-Leu-PNP

Scheme 2 Preparation of the water-soluble polymer TSSP

TSSP is given by the enantiomer rate ratio $k_{cat}(L/D) =$ 3.0 (10% v/v DMSO-H₂O) – 7.2 (10% v/v MeCN-H₂O). Since TSSP did not hydrolyse C_{2} -L-Leu (or Phe)-PNP efficiently, the soluble TSSP catalyst can recognize both the skeletons of the N-benzyloxy (Z) group and the L-Leu side chain of the substrates with the substratestereospecificity.

In this respect, the hydrolysis of Z-L-Leu-PNP with TSSP in the presence of rac-TSA decreased the reaction rate monotonously and stopped the catalytic reaction completely under the condition of $[rac_TSA]/[TSSP] =$ 2.0 *(Figure 1).* Therefore, the soluble TSSP polymer has the reaction cavity which recognizes the skeleton of *rac-*TSA, especially that of L-TSA. This implies that the complex formation of L-His monomer with L-TSA in DMSO through the hydrogen bonding or electrostatic interaction was predominant rather than with D-TSA in the preliminary mixed system of L -His monomer and *rac-TSA* for the synthesis of TSSP polymer (see *Scheme 2).*

In regard to the facilitated incorporation and hydrolysis of Z-L-Leu-PNP in the cavity of TSSP, the kinetic parameters of K_m and k_2 were obtained from the linear relation of $1/(k_{cat} - k_{uncat}) = K_m/(k_2 - k_{uncat})$ [TSSP] + $1/(k_2 - k_{\text{uncat}})$ in the following simplified process for the esterolysis of Z-L-Leu-PNP with TSSP ([TSSP] $= 0.12$ 0.50 mmol dm⁻³) in 10% v/v DMSO-H₂O in Tris buffer (pH 7.15) at 303 K.

Scheme 3 A simplified reaction process of the ester (S) hydrolysis with **TSSP**

Table 1 Catalytic activity and stereoselectivity of the soluble polymer catalyst TSSP for the hydrolyses of Z-L (or D)-Leu-PNP and C₂-L-Leu (or Phe)-PNP in 10% v/v DMSO-H₂O (A) or 10% v/v MeCN-H₂O (B) in Tris buffer (pH 7.15) at 303 K^a

Parameter	Z-t-Leu-PNP		Z-D-Leu-PNP		C_2 -L-Leu-PNP	C_{2} -L-Phe-PNP
	In solvent A	In solvent B	In solvent A	In solvent B	In solvent B	In solvent B
10^5 K _{cat} (s ⁻¹)	11.6	8.03	3.83	1.11	6.56	10.3
	(5.50)					
$10^5 k_{\text{uncat}} (s^{-1})$	4.82	3.97	4.82	3.97	7.24	9.51
$k_{\text{cat}}/k_{\text{uncat}}$	2.4	2.0	1/1.3	1/3.6	1/1.1	1.08
	(1.2)					
10^2 k_{cat}^{app} (mol dm ⁻³)	29.5	17.6	0<	0<	0<	3.4
	(6.8)					

^a [His unit is TSSP] = 0.23 mmol dm⁻³ and [substrate] = 20.0 μ mol dm⁻³. Values in parentheses were obtained with 0.10 mmol dm⁻³ methyl Lhistidinate (His)

Figure 1 Inhibition of the Z-L-Leu-PNP (20.0 μ mol dm⁻³) esterolysis with TSSP ([His unit] = 0.23 mmol dm⁻³) by TSA (0-40.0 μ mol dm⁻³) in 10% v/v DMSO- H_2O in Tris buffer (pH 7.15) at 303 K

It is also worth emphasizing that the soluble TSSP catalyst actually incorporates Z-L-Leu-PNP to form the TSSP-substrate complex with $K_m = 2.24 \times 10^{-4}$ mol⁻¹ dm³ and hydrolyses Z-L-Leu-PNP efficiently with the reaction rate ratio $k_2/k_{\text{uncat}} = 16.2 \ (10^5 k_2 = 64.8 \text{ s}^{-1}).$

Thus, the present soluble TSSP catalyst, the reaction cavity of which seems to be predominantly recorded by the shape of *L-TSA,* was found to exhibit the efficient substrate-stereospecific hydrolysis of Z-L-Leu-PNP through the substrate incorporation into its reaction cavity.

REFERENCES

- 1 Wulff, G. *Angew. Chem. hit. Edn Engl.* 1995, 34, 1812 (and literature cited therein)
- 2 Ohkuho, K., Urata, Y., Honda, Y., Nakashima, Y. and Yoshinaga, K. *Polvm. Commun.* 1994, 35, 5372
- 3 Robinson, D. K. and Mosbach, *K. J. Chem. Soc., Chem. Commun.* 1989, 969
- 4 Ohkubo, K., Urata, Y., Hirota, S., Honda, Y. and Sagawa T. J. *Mol. Cat,* 1994, 87, L21
- 5 Ohkubo, K., Urata, Y., Hirota, S., Honda, Y., Fujishita, Y, and Sagawa, *T. J. Mol. Cat.* 1994, 93, 189